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Abstract

Exact Dirichlet-to-Neumann (DtN) boundary conditions on cross-sections of three-dimensional semi-infinite wave

guides are derived. This enables the exact truncation of a wave guide to allow computations in a finite domain X. The
DtN boundary condition is nonlocal in space but local in time. Practical implementation requires the truncation of the

exact boundary condition by approximating an infinite sum with a finite sum, and by terminating an infinite recursion

relation. The truncated condition is incorporated in a finite element scheme to solve the problem in X. The cross-section
of the guide may have an arbitrary shape. The three-dimensional time-dependent dispersive wave equation is considered

in the guide. The dispersion parameter is allowed to vary in the cross-section. All the results reduce immediately to the

two-dimensional and to the one-dimensional cases. To the best of the authors’ knowledge, this is the first time that an

exact boundary condition is derived in the dispersive case, even in one dimension.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Dirichlet-to-Neumann (DtN) map is a mathematical tool that can be used effectively to replace a

problem given in a certain domain by an equivalent problem defined on the boundary (or part of the
boundary) of that domain. See, e.g., [1] for a review on the subject and various applications. One important

application is the numerical solution of problems in unbounded domains. In this case, the DtN map is used

to truncate the infinite domain in an exact manner, so as to allow the computational solution of the

problem in a finite domain. A more general family of schemes of this kind is the family of artificial

boundary methods. An artificial boundary method consists in the following steps:
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(a) Introduce an artificial boundary B, which divides the original unbounded domain into two domains: a

finite computational domain X and an infinite residual domain D.
(b) By analyzing the problem in D, obtain a relation on B (exact or approximate) involving the unknown

function u and its derivatives.
(c) Use this relation as a boundary condition on B, to obtain a well-posed problem in X.
(d) Use a numerical method to solve the problem in X.

The relation obtained in step (b) and used as a boundary condition in step (c) is called an artificial

boundary condition, or, in the context of wave problems, a non-reflecting boundary condition (NRBC).

The latter name comes from the fact that such a boundary condition is aimed at eliminating the spurious

reflection of waves from B, which is otherwise present. See [2–4] for reviews on the subject.

The DtN boundary condition is an exact NRBC, and is based on the relevant DtN map. The

latter is a linear operator, typically nonlocal, that is associated with the differential equation given in
D and with the geometry of B and D (see [1]). Incorporating the DtN NRBC on B in a finite el-

ement (FE) formulation results in the DtN-FE method, which is a general numerical method for the

solution of problems in unbounded domains. See [5] for details and references and [6] for recent

advances.

A serious limitation of the DtN-FE method is that it is based on an analytic expression for the DtN map,

which in turn may be difficult or impossible to derive for certain equations or configurations. The difficulty

is similar to that of deriving the Green’s function for a given problem. However, in those cases where the

DtN map is available and is sufficiently simple (e.g., the Helmholtz equation with constant coefficients), the
DtN-FE method has been shown to be very effective.

DtN-type NRBCs have been proposed mainly in the elliptic (or time harmonic) case. An exact NRBC

for time-dependent waves was devised by Ting and Miksis [7,8] for three-dimensional (3D) waves exterior

to a spherical artificial boundary. More recent exact NRBCs in the time-dependent case were proposed by

Collino [9] for two-dimensional (2D) waves in rectangular domains, Guddati and Tassoulas [10] for time-

dependent waves in a 2D wave guide, and Grote and Keller [11] and Hagstrom and Hariharan [12] for 3D

waves exterior to a sphere. The Collino conditions and the Guddati–Tassoulas conditions are based on

rational approximations, and are probably convergent (not only asymptotically correct) although this has
not been proved in [9,10]. The Grote–Keller conditions and the Hagstrom–Hariharan conditions are

convergent, but only in 3D.

Harari et al. [13] derived DtN boundary conditions for time-harmonic waves in 3D wave guides with an

arbitrary cross-sectional shape. In this paper we generalized this work to the more difficult case of time-

dependent waves. Moreover, we allow the medium to be dispersive. Wave dispersion makes the artificial

boundary treatment yet harder. None of the exact NRBCs mentioned above is designed to deal with

dispersion. In fact, to the best of our knowledge no exact NRBCs have been available for dispersive waves

in any dimension. The new NRBC will be derived here for wave guides in 3D but is applicable to 2D and
1D as well. It is nonlocal in space (which is typical for DtN boundary conditions) but local in time. We

allow the dispersion parameter to vary in the cross-section.

Very recently, Givoli et al. [14–16] proposed a high-order local NRBC for time-dependent dispersive

waves. This NRBC is a practical implementation of the ‘‘theoretical’’ high-order Higdon NRBC [17]. In

[15] it is shown that this NRBC is exact in a certain weak sense. The NRBC proposed in the present paper is

entirely different, and is exact in the usual, stronger sense. On the other hand, it is relevant only for wave

guide geometries, whereas the NRBC in [14–16] is much more general.

It should be remarked that practical implementation requires the truncation of the exact boundary
condition by approximating an infinite sum with a finite sum, and by terminating an infinite recursion

relation. Thus the actual boundary conditions used here are approximate. Moreover, the convergence of

the scheme as the termination parameter approaches infinity is not proved here, although numerical ex-

periments support it.
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Following is the outline of the rest of this paper. In Section 2 we give the statement of the problem, and

in Section 3 we derive the exact DtN boundary condition. In Section 4 we present the corresponding FE

formulation. FE discretization leads to a system of ordinary differential equations in time, whose numerical
solution we discuss in Section 5. In Section 6 we present a number of numerical examples with 3D and 2D

wave guides. We conclude the paper with some remarks in Section 7.
2. Statement of the problem

We consider a 3D semi-infinite wave guide. The longitudinal coordinate of the wave guide is z, and x and
y are coordinates in the cross-section. To make the computational domain X finite, we truncate the wave
guide at a certain z location beyond all the ‘‘irregularities’’ of the problem (non-uniform cross section,

inhomogeneities, nonzero initial conditions, nonlinearities, etc.). The truncation cross-section is denoted B.

For convenience we locate the coordinate origin there, so that B is the cross-section z ¼ 0. The semi-infinite

‘‘tail’’ of the wave guide, which is assumed to be uniform in z, is denoted D, while its curved surface is

denoted c. A generic cross-section is denoted C. See Fig. 1.

Our goal is to find an exact boundary condition onB that will enable us to solve the problem in the finite

domain X. To this end we consider the problem in D. We assume the following equation and boundary

conditions:

C2
0r2u ¼ €uþ f 2u in D; ð1Þ
u ¼ uB on B; ð2Þ
Su ¼ 0 on c; ð3Þ
u � 0; _u � 0 at t ¼ 0: ð4Þ

Eq. (1) is the dispersive (Klein–Gordon) equation, where C0 is the reference wave speed and f is the dis-
persion parameter. A superposed dot indicates differentiation with respect to time t. In (2), uB is a given

though arbitrary function on B, and S is a boundary operator which does not depend on z (such as the

identity or the normal derivative). We assume C0 to be constant in D, but we allow f to vary in the cross

section, i.e., f ¼ f ðx; yÞ. These limiting assumptions apply only in the exterior domain D. In the finite

computational domain X no such limitations exist in principle, since the problem is solved numerically

there.

By solving the problem (1)–(4) we will be able to obtain a DtN-type boundary condition on B. We recall

[1] that in the simplest case the DtN boundary condition has the form
D

B

y
x
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Γ
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Fig. 1. A semi-infinite wave guide. The irregular region X is the computational domain, whereas D is a uniform ‘‘tail’’. A generic cross-

section in the tail is denoted C, and the truncation cross-section separating X from D is denoted B.



342 D. Givoli, I. Patlashenko / Journal of Computational Physics 199 (2004) 339–354
ou
oz

¼ �Mu on B; ð5Þ

where M is an operator (the DtN map). In the time-dependent case, a DtN condition of the form (5) would

usually be nonlocal in both space and time. Nonlocality in time means that the operator M involves an

irreducible convolution integral, which in turn has distinct numerical disadvantages (see, e.g., [5]). How-

ever, locality in time may be achieved by extending (5) to the form

e1
ou
oz

¼ �MU on B: ð6Þ

Here U is a vector whose entries are u and specially-defined auxiliary variables on B, i.e.,

UT ¼ u /1 /2 � � � /J�1f g; ð7Þ

and e1 is the J -dimensional unit vector defined by

eT1 ¼ 1 0 0 � � � 0f g: ð8Þ

In (7) and (8), the T denotes transposition. The DtN condition (6) becomes ‘‘exact’’ as J goes to infinity. We

shall derive a DtN condition of the form (6) for the problem (1)–(4).
3. Derivation of the DtN boundary condition

We consider the problem (1)–(4) in D. We separate variables and write

uðx; y; z; tÞ ¼ Y ðx; yÞUðz; tÞ: ð9Þ

Then standard manipulation leads to

U 00

U
� 1

C2
0

€U
U

¼ �r2Y
Y

þ f 2

C2
0

� l2: ð10Þ

Here a prime denotes differentiation with respect to z, and l is the separation constant. Eqs. (3) and (10)

lead to the following eigenvalue problem in the cross-section C:

r2Y þ l2

�
� f 2

C2
0

�
Y ¼ 0 in C; ð11Þ
SY ¼ 0 on oC: ð12Þ

This problem can be solved either analytically or (if not possible) numerically in the cross-section C, to yield

the eigenvalues ln and the corresponding eigenfunctions Yn, for n ¼ 0; 1; 2; . . . Since the operator in (11) is

self-adjoint, the eigenfunctions Yn are orthogonal, namelyZ
C
YnYm dC ¼ bndmn ðno sumÞ; ð13Þ

where dmn is the Kronecker delta, and bn is the constant obtained from the integration when m ¼ n. (Of

course, the eigenfunctions can be normalized so that bn � 1.)
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Now from (10) we get an equation for Unðz; tÞ, i.e.,

U 00
n � 1

C2
0

€Un � l2
nUn ¼ 0: ð14Þ

The solution u of the original problem is given by

uðx; y; z; tÞ ¼
X1
n¼0

Ynðx; yÞUnðz; tÞ: ð15Þ

The ‘‘Fourier coefficients’’ Un in the expansion (15) in terms of the orthogonal functions Yn are obtained

from u via

Un ¼
1

bn

Z
C
YnudC: ð16Þ

To obtain (16), multiply both sides of (15) by Ym, integrate over C and use the orthogonality (13).

Now we introduce the family of auxiliary functions /jn (or /j;n) using the following recursive definition:

/0n � Un; ð17Þ
/jþ1;n �
o

oz

�
þ 1

C0

o

ot

�
/jn; ð18Þ

for j ¼ 0; 1; 2; . . . and n ¼ 0; 1; 2; . . . This definition is reminiscent of that of /j used in [16], although there

each auxiliary function had a single index j and the coefficient of o=ot depended on it (i.e., 1=Cj rather than
1=C0).

From this definition and the fact that C0 is constant it is easy to conclude that each of the functions /jn

satisfies a 1D wave equation like (14), namely,

/00
jn �

1

C2
0

€/jn � l2
n/jn ¼ 0: ð19Þ

This enables us to make the following calculation, analogous to the one used in [16]. First, (19) can be

written as

o

oz

�
� 1

C0

o

ot

�
o

oz

�
þ 1

C0

o

ot

�
/jn � l2

n/jn ¼ 0: ð20Þ

From (18) we then conclude

o

oz

�
� 1

C0

o

ot

�
/jn � l2

n/j�1;n ¼ 0: ð21Þ

In deriving (21) we have replaced j by j� 1 everywhere. Eq. (21) thus holds for j ¼ 1; 2; . . . and n ¼ 0; 1; . . .
Now we add (18) and (21), note that the z-derivative term cancels out, and finally obtain

2

C0

_/jn ¼ /jþ1;n � l2
n/j�1;n on B; ð22Þ

for j ¼ 1; 2; . . . and n ¼ 0; 1; . . . Eq. (22) is a boundary condition on B for the auxiliary functions /jn. It is

important to note that (22) does not involve any z-derivatives; hence the auxiliary functions /jn can be

thought of now as if they are defined over B only, i.e., /jn ¼ /jnðx; y; tÞ, despite the fact that we needed to

consider their z-derivative in the derivation above.
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The boundary condition (22) for j ¼ 1 involves /0n � Un. Since we do not desire Un to appear explicitly

in the formulation, we use (16) to express the Un in terms of u on B, i.e.,

/0n � Un ¼
1

bn

Z
B

YnudB: ð23Þ

Substituting this in (22) for j ¼ 1 yields

2

C0

_/1n ¼ /2n �
l2
n

bn

Z
B

YnudB: ð24Þ

It only remains to derive a boundary condition for u itself, which will be connected to the conditions
given by (22) and (24). To this end we first note that from (18) with j ¼ 0 and using (17) we have

/1n ¼ U 0
n þ

1

C0

_Un: ð25Þ

Now we calculate:

u0jB ¼ u0ðx; y; 0; tÞ ¼
X1
n¼0

Ynðx; yÞU 0
nð0; tÞ ¼

X1
n¼0

Ynðx; yÞ /1nðx; y; tÞ
�

� 1

C0

_Unð0; tÞ
�

¼ � 1

C0

_uðx; y; 0; tÞ þ
X1
n¼0

Ynðx; yÞ/1nðx; y; tÞ: ð26Þ

Here, the second equality follows from (15), the third equality follows from (25), and the last equality

follows again from (9). Thus, we have

u0 ¼ � 1

C0

_uþ
X1
n¼0

Yn/1n on B: ð27Þ

The exact NRBC on B now consists of Eqs. (22), (24) and (27). To make it practical for computation we
introduce two approximations:

1. We truncate the infinite sum over n in the equations above after N terms, for some given N P 1.

2. We terminate the recursive relations (18) by assuming

/Jþ1;n � 0 ð28Þ

for some given J P 1.

Thus we have JðN þ 1Þ þ 1 variables in our formulation: the function u and the auxiliary variables /jn, for

j ¼ 1; . . . ; J and n ¼ 0; . . . ;N . The following JðN þ 1Þ þ 1 equations, which are obtained from (22), (24),
(27) and (28) constitute the corresponding NRBC on B for these variables:

u0 ¼ � 1

C0

_uþ
XN
n¼0

Yn/1n; ð29Þ
2

C0

_/1n ¼ /2n �
l2
n

bn

Z
B

YnudB; n ¼ 0; . . . ;N ; ð30Þ
2

C0

_/jn ¼ /jþ1;n � l2
n/j�1;n; n ¼ 0; . . . ;N ; j ¼ 2; . . . ; J ; ð31Þ
/Jþ1;n � 0; n ¼ 0; . . . ;N : ð32Þ
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This DtN-type NRBC is nonlocal in space due to the integral term in (30). However, it is local in time.

Locality here means that no convolution integral in time appears in the formulation, so that the scheme

does not require the direct use of ‘‘memory.’’ This is in contrast to previous DtN formulations for unsteady
waves, that involve convolution integrals and memory storage; see, e.g., [5]. The NRBC scheme based on

the Kirchhoff integral [7,8] is also nonlocal in time, although the amount of required memory is fixed and

does not grow in time. In the present scheme the locality in time, incorporated with the use of a standard

two-step time integration scheme, implies that at each time step only information from the single previous

time-step is used. Nevertheless, it should be realized that in a certain sense nonlocality in time of unsteady

exact NRBCs is their fundamental property, that is only circumvented here computationally.

The question of convergence of the scheme using this NRBC as n and j increase naturally arises.

Convergence of the infinite series in (29) as n approaches infinity is a consequence of the general theory of
eigenfunctions. The convergence of the scheme as J goes to infinity is much more subtle. At present, we do

not have a theory to support such a convergence. However, the numerical experiments presented in Section

6 as well as additional experiments not presented here demonstrate that the latter convergence indeed exists.

In addition, the formulation presented here is reminiscent of (although not equivalent to) the high-order

Higdon formulation presented in [15]. In the latter case, convergence is guaranteed under some general

conditions, according to the theory developed by Higdon; see [17] and references therein, and see also

discussion on this issue in [15].

We may try to analyze the behavior of the proposed NRBCs by transforming them and the whole
problem into the frequency domain, namely by considering the time-harmonic case. Then the unsteady

wave equation is replaced by the Helmholtz equation and the recursive relation (18) is replaced by

/jþ1;n �
o

oz

�
� ik

�
/jn: ð33Þ

In the one-dimensional case the analysis is easy and leads to some constraints on the values of k and f in

order to guarantee convergence for J ! 1. (We thank the reviewer for bringing this to our attention.)

However, the time-harmonic case, and hence the analysis mentioned above, does not fall into the frame-

work of problems under discussion, since the important assumption of zero initial conditions in the exterior

domain and on B is violated in this case. We remark that the same type of analysis can also be applied in

the case of Higdon conditions [15,17]; in fact an operator similar to the one in (33) appears then. In that

case, the constraints obtained by the one-dimensional time-harmonic analysis are clearly irrelevant in the
time-dependent case. Thus, it seems that a simple time-harmonic analysis cannot provide useful informa-

tion on convergence in the unsteady case using the NRBC (29)–(32).

The convergence analysis of the present scheme for increasing J values is left for theoretical investigation

in future studies.
4. Finite element formulation

We consider the FE formulation of the problem in the computational domain X, using (29)–(32) as a

NRBC on B. The boundary of X on which physical boundary conditions are given (i.e., oX–B) is denoted

C (see Fig. 1). In obtaining the FE formulation we shall assume that all the variables, namely u and all the

/jn, are discretized using the same mesh and shape functions. Later in this section we shall comment on this
assumption. We denote NA and Na the FE shape (basis) functions on the global and element level, re-

spectively.

To fix ideas we consider the following problem in X:

C2
0r2u ¼ €uþ f 2u� W in X; ð34Þ
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C2
0

ou
om

¼ H on C; ð35Þ
NRBC ð29Þ–ð32Þ on B; ð36Þ
u ¼ u0; _u ¼ v0 at t ¼ 0: ð37Þ

Here W and H are given functions (volume and boundary wave sources), u0 and v0 are given functions

(initial conditions), and in (35) o=om is the normal derivative on C. It should be noted that all sources and

initial conditions are assumed to be zero on the boundary B itself, namely the support of these functions is

strictly inside X.
Eqs. (29), (34) and (35) lead, after standard FE discretization in space (see [18]), to the semi-discrete

linear system

M€d þ C _d þ Kd ¼ F þ
XN
n¼0

Gn/1n: ð38Þ

Here d is the vector of nodal values of u, and /1n is the vector of nodal values of /1n. The matrices M, K
and vector F are the standard FE arrays [18] and are not related to the NRBC on B. On the element level

their entries are given by

me
ab ¼

Z
Xe
NaNb dX; ð39Þ
keab ¼ C2
0

Z
Xe
rNa � rNb dXþ f 2

Z
Xe
NaNb dX; ð40Þ
f e
a ¼

Z
Xe
NaW dXþ

Z
Ce
NaH dC: ð41Þ

Here the indices a and b denote element node numbers, the index e stands for an element number, and Xe is

the domain of element e. The NRBC contributes only to the ‘‘damping matrix’’ C and to the ‘‘/1n-mass

matrix’’ Gn. On the element level, these arrays are calculated by

ceab ¼ C0

Z
Be
NaNb dB; ð42Þ
ðgenÞab ¼ C2
0

Z
Be
NaYnNb dB; ð43Þ

for nodes a and b on the boundary B. (If either a or b is not on B the entry is zero.)

Eq. (30) in its original form would lead to a non-symmetric formulation. To avoid this, we multiply it

throughout by Yn to obtain

2

C0

Yn _/1n ¼ Yn/2n �
l2
n

bn
Yn

Z
B

YnudB: ð44Þ

Spatial FE discretization of (44) leads to the semi-discrete system

Sn
_/1n ¼ Rn/2n � Pnd: ð45Þ
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The matrices Sn and Rn are calculated on the element level via

ðsenÞab ¼
2

C0

Z
Be
NaYnNb dB; ð46Þ
ðrenÞab ¼
Z
Be
NaYnNb dB: ð47Þ

Note that these matrices are in fact identical up to a scalar factor. The matrix Pn in (45) must be calculated

on the global level due to the nonlocal nature of the integral term in (30):

ðPnÞAB ¼ l2
n

bn

Z
B

Z
B

NAðxÞYnðxÞYnðx0ÞNBðx0Þdx0 dx; ð48Þ
ðPnÞAB ¼ l2
n

bn

Z
B

NAYn dB
� � Z

B

NBYn dB
� �

: ð49Þ

Finally, FE discretization of Eq. (31) leads to the semi-discrete system

S _/jn ¼ R/jþ1;n �Qn/j�1;n; j ¼ 2; . . . ; J : ð50Þ

On the element level, the matrices S, R and Qn are calculated via

seab ¼
2

C0

Z
Be
NaNb dB; ð51Þ
reab ¼
Z
Be
NaNb dB; ð52Þ
ðqenÞab ¼ l2
n

Z
Be
NaNb dB: ð53Þ

These three matrices are identical up to a scalar factor.

The FE formulation presented above allows, at least in theory, a general choice of the shape functions.

Namely, different shape functions N ðjÞ
a may be chosen for the different variables /j. However, it is ad-

vantageous to choose all the shape functions to be the same for all the variables, as done above. It should be

noted that one has to be careful with the choice of the shape functions in a mixed FE formulation like the
present one, since the Babu�ska–Brezzi (BB) condition of stability must be satisfied [18]. Fortunately, nu-

merical experiments that we have performed show that equal-order interpolation, and in particular bilinear

shape functions in X for u and linear one-dimensional shape functions on B for all the /j, is a stable

combination. No locking or other convergence difficulties have been observed. The situation is somewhat

similar to that of the mixed FE formulation devised in [19] for time-harmonic waves. Yet, the satisfaction of

the BB condition is still to be proved mathematically.
5. Solution of the semi-discrete equations

The full system of semi-discrete equations is given by (38), (45), (50) and the FE nodal analogue of (32).

We write these equations again for clarity:
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M€d þ C _d þ Kd ¼ F þ
XN
n¼0

Gn/1n; ð54Þ
Sn
_/1n ¼ Rn/2n � Pnd; n ¼ 0; . . . ;N ; ð55Þ
S _/jn ¼ R/jþ1;n �Qn/j�1;n; n ¼ 0; . . . ;N ; j ¼ 2; . . . ; J ; ð56Þ
/Jþ1;n ¼ 0: ð57Þ

A time-integration scheme is proposed now for the solution of this coupled system of ODEs. The subsystem
(54) for d is of second order, and is discretized based on the Newmark family of schemes [18]. This family

has two parameters, 06 b6 1=2 and 06 c6 1, which control the accuracy and stability of the scheme. The

subsystems (55) and (56) for /jn have a first-order form and are solved using the generalized trapezoidal

family of schemes [18], which involves one parameter 06 a6 1.

The approximations of d, _d and €d at time-step m are denoted by dm, vm and am, respectively. Also, the

approximations of /jn and
_/jn at time-step m are denoted by ð/jnÞm and ðV jnÞm, respectively. The time-step

size is denoted Dt.
In predictor-corrector form, the proposed time-integration scheme (for advancing from time-step m to

time-step mþ 1) is

Prediction:

~dmþ1 ¼ dm þ Dtvm þ Dt2

2
ð1� 2bÞam; ð58Þ
~vmþ1 ¼ vm þ ð1� cÞDtam; ð59Þ
ð~/jnÞmþ1 ¼ ð/jnÞm þ ð1� aÞDtðV jnÞm; j ¼ 1; . . . ; J ; n ¼ 0; . . . ;N : ð60Þ

Solution+ correction for d:

ðM þ cDtC þ bDt2KÞamþ1 ¼ Fmþ1 þ
XN
n¼0

Gnð~/1nÞmþ1 � C~vmþ1 � K~dmþ1; ð61Þ
dmþ1 ¼ ~dmþ1 þ bDt2amþ1; ð62Þ
vmþ1 ¼ ~vmþ1 þ cDtamþ1: ð63Þ

Solution+ correction for /1n:

SnðV1nÞmþ1 ¼ Rnð~/2nÞmþ1 � Pndmþ1; n ¼ 0; . . . ;N ; ð64Þ
ð/1nÞmþ1 ¼ ð~/1nÞmþ1 þ aDtðV1nÞmþ1; n ¼ 0; . . . ;N : ð65Þ

Solution+ correction for /jn; jP 2:

For j ¼ 2; . . . ; J ; ð66Þ
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SðV jnÞmþ1 ¼ Rð~/jþ1;nÞmþ1 �Qnð/j�1;nÞmþ1; n ¼ 0; . . . ;N ; ð67Þ
ð/jnÞmþ1 ¼ ð~/jnÞmþ1 þ aDtðV jnÞmþ1; n ¼ 0; . . . ;N : ð68Þ

Note the order in which these calculations are done in the scheme above at each time step. This order is

designed so that in each calculation the maximal amount of information is available from previous cal-

culations. Note, however, that in (61), (64) and (67), the predicted vector ð~/jþ1;nÞmþ1 has been used rather

than ð/jþ1;nÞmþ1, since the latter is not known at the current stage of the calculation. This may lead to a

numerical instability or to poor accuracy. To avoid these, the whole solution process given by Eqs. (61)–

(68) is repeated, within a time step, a number of times in an iterative manner. In each additional cycle use is
made of the last computed /jþ1;n instead of ð~/jþ1;nÞmþ1. Numerical experiments show that usually one

additional cycle is needed to yield stable and accurate results.

It should be noted that the split time-integration scheme proposed above is not the only way to go about

solving the system of semi-discrete equations. One other way is by a fully implicit scheme. In this case all the

equations are solved simultaneously, taking into account all the coupling terms. This scheme is uncondi-

tionally stable, but at the same time involves a large non-symmetric system of equations, and is inconve-

nient from a programming point of view. The other extreme, namely that of a fully explicit scheme, may be

possible too, although we have not considered such schemes in the present study.
6. Numerical examples

We now demonstrate the performance of the scheme described above with a number of examples. We

consider a semi-infinite wave guide with a rectangular cross-section, as shown in Fig. 2. The cross-sectional

dimensions are 3� 3. We take C0 ¼ 1, and initially we assume that the medium is dispersion-free, i.e.,

f ¼ 0. On the cylindrical boundary, defined by the four planar surfaces x ¼ 0, y ¼ 0, x ¼ 3 and y ¼ 3, we
take a zero Neumann boundary condition (hard wall), i.e., ou=om ¼ 0. On the edge z ¼ 0 we take the zero

Dirichlet condition u ¼ 0. There are no wave sources, so the whole problem is driven by the initial con-

ditions. It should be noted in passing that as far as the treatment of the boundary B is concerned, there is

no inherent difference between waves driven by sources or by initial conditions. Since we assumed that both

sources and initial data are zero on B, the information arrives to B only from within X. In the present

example the initial velocity _u is zero throughout X, but uðx; y; z; 0Þ ¼ u0 (see (37)) is nonzero in the region

0:96 z6 1:5 and varies in all three directions. In the z-direction u0 changes piecewise-linearly (like a ‘‘hat’’
Fig. 2. The 3D rectangular wave guide problem.
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function) from 0 at z ¼ 0:9 to 1 at z ¼ 1:2 to 0 again at z ¼ 1:5. In the cross-section we consider three

different variations of u0:

Case 1 : u0ðx; yÞ ¼ 1; ð69Þ
Case 2 : u0ðx; yÞ ¼ cosðpx=3Þ cosðpy=3Þ; ð70Þ
Case 3 : u0ðx; yÞ ¼ ð�ð2=3Þx2 þ ð5=3ÞxÞð�ð2=3Þy2 þ ð5=3ÞyÞ: ð71Þ

The first case is uniform, the second corresponds to a pure mode (eigenfunction), whereas the third is

parabolic and thus consists of an infinite number of modes.

We truncate the wave guide by introducing the artificial boundary B at z ¼ 3, as shown in Fig. 2. This

defines the computational domain X which is a 3� 3� 3 cube. As a reference solution to which we shall

compare our results, we take the solution obtained by truncating the guide at z ¼ 9. Thus, the reference

computational domain is three times longer than X. During the simulation time waves will not reach z ¼ 9
and thus the reference solution will be free from spurious reflection, and will be regarded as the ‘exact

solution’.

A mesh of 1000 bilinear finite elements (10� 10� 10) is used to discretize X. A mesh of 3000 bilinear

elements of the same density is used for the reference solution. On the artificial boundary B we use the DtN

boundary conditions described earlier with chosen parameters N and J (see below). In the time integration

scheme we use the Newmark parameters b ¼ 0:25 and c ¼ 0:5, the trapezoidal parameter a ¼ 0:5, and the

time-step size Dt ¼ 0:01.
Recall that J is the order of the NRBC which is also the number of auxiliary variables taken, whereas N

is the number of eigenfunctions included in the DtN expansion. Since the cross-sectional eigenfunctions are

two-dimensional, each n ¼ 0; . . . ;N represents a pair of modes in the x- and y-directions, i.e., n ¼ ðnx; nyÞ.
We number the modes in the following fashion:

n ¼ 0; 1; 2; . . . � ð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þ; ð2; 0Þ; ð0; 2Þ; ð2; 1Þ; ð1; 2Þ; ð2; 2Þ; . . . ð72Þ

Thus, for example, N ¼ 3 includes the modes fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg, namely all the modes with nx 6 1,

ny 6 1, whereas N ¼ 8 includes all the modes appearing in (72), namely the modes with nx 6 2, ny 6 2.

For Case 1 and Case 2 we took J ¼ 5 and a varying N . As expected, in Case 1 the same numerical results

were obtained for all values of N (since the exact solution in this case corresponds to the cross-sectional
mode N ¼ 0, and hence including additional modes in the DtN expansion does not change the accuracy),

and in Case 2 the results did not depend on N for N P 3. In particular, we compared the errors generated by

the ðN ¼ 3; J ¼ 5Þ DtN NRBC and by the Sommerfeld-like boundary condition which is the simplest

NRBC possible (see, e.g., [2]). In Case 1, the relative maximal pointwise error on B was 0:48% for both

NRBCs. In Case 2, the error was 8:33% for the Sommerfeld-like NRBC and 0:39% for the DtN condition.

Case 3 poses a more difficult problem since in this case the exact solution involves an infinite number of

modes. Fig. 3 shows the solution u at time t ¼ 4 and location z ¼ 3 and y ¼ 3, as a function of x. Since the
wave speed is C0 ¼ 1, at time t ¼ 4 the front of the wave already passed the artificial boundary. Four
solutions are shown in the figure: the ‘exact’ solution, and the solutions corresponding to three combi-

nations of N and J : ðN ¼ 3; J ¼ 1Þ, ðN ¼ 3; J ¼ 4Þ and ðN ¼ 8; J ¼ 6Þ. We see that the ðN ¼ 8; J ¼ 6Þ
solution is indistinguishable from the ‘exact’ solution, whereas the other two numerical solutions contain a

significant error. It is interesting to note that these two low-order solutions ‘‘bound’’ the exact solution

along most of the x interval from different sides.

In Fig. 4 we compare the four solutions onB at time t ¼ 4 by superposing the contour lines of the ‘exact’

solution on those of each of the numerical solutions. The improvement in accuracy achieved as N and J
increase is apparent. The ðN ¼ 3; J ¼ 1Þ solution is completely off, the ðN ¼ 3; J ¼ 4Þ solution captures the
qualitative behavior of the ‘exact’ solution correctly but with some spurious phase shifts, whereas the

ðN ¼ 8; J ¼ 6Þ solution almost coincides with the ‘exact’ solution.



Fig. 4. The 3D wave guide problem: comparison, at time t ¼ 4, of contour lines of the ‘exact’ solution onB with (a) the ðN ¼ 3; J ¼ 1Þ
solution, (b) the ðN ¼ 3; J ¼ 4Þ solution, and (c) the ðN ¼ 8; J ¼ 6Þ solution. The ‘exact’ solution is represented by solid lines, whereas

the solutions using the NRBCs are represented by dashed lines.

Fig. 3. The 3D wave guide problem: comparison of solutions along the x-direction at time t ¼ 4 and location z ¼ 3 and y ¼ 3.
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To further investigate the computational errors generated by the proposed scheme, we now turn into a

simpler 2D problem. We consider a wave guide with a square cross-section, but this time the boundary and

initial conditions, hence the solution itself, do not depend on x but only on y and z. The whole problem can

be solved in a ðy; zÞ semi-infinite strip of width b ¼ 3. All the parameters remain the same as for the 3D

problem considered previously, except that the initial condition for u is taken to be

u0ðy; zÞ ¼ HðzÞ cos 4py=bð Þ; ð73Þ

where HðzÞ is a ‘‘hat’’ function, varying piecewise-linearly from 0 at z ¼ 0 to 1 at z ¼ 0:5 to 0 again at z ¼ 1,
and is zero for zP 1. A 60� 60 element mesh is used in the 3� 3 computational domain X.

To measure the global error, we first define the error measure

�E2ðtÞ ¼
XNB

m¼1

uðym; 0; tÞð � uexðym; 0; tÞÞ2: ð74Þ
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Here u is the computational solution, uex is the ‘exact’ solution, NB is the number of nodes on B, and ym is

the y-location of node m onB. �EðtÞ is the Eulerian norm of the error over the boundaryB. Now, for a given

simulation time T , we define the global error-measure in space and time,

EðT Þ ¼
Z T

0

�E2ðtÞdt
� �1

2

: ð75Þ

This is the accumulated error on B during the entire simulation. Fig. 5 shows this error as a function of the
simulation time T for three numerical schemes: ðN ¼ 2; J ¼ 2Þ, ðN ¼ 8; J ¼ 4Þ and ðN ¼ 17; J ¼ 18Þ. It is
Fig. 5. The 2D wave guide problem: the global error E as a function of the simulation time T for three numerical schemes.

Fig. 6. The 2D wave guide problem: the global error E as a function of the simulation time T for various values of the dispersion

parameter f , as obtained by the J ¼ N ¼ 6 NRBC.



(a) (b)

Fig. 7. The 2D wave guide problem: the solution at the center of B as a function of time t, for (a) f ¼ 0 and (b) f ¼ 50. The ‘exact’

solution is compared with the NRBC solution.
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clear that the error reduces drastically (note the logarithmic scale) when N and J are increased. Moreover,

the accumulated simulation-error increases much less rapidly with T for the higher-order schemes.

All the experiments above have been done with no medium dispersion, namely with f ¼ 0. Now we fix

the scheme parameters J ¼ N ¼ 6, and we look at the error for different values of the dispersion parameter

f . Fig. 6 compares the EðT Þ obtained for f ¼ 0, f ¼ 1, f ¼ 10 and f ¼ 50. For small simulation times T the

error is affected significantly by the amount of dispersion, although not in a monotonic way (the f ¼ 10

error is larger than the f ¼ 50 error). For long simulation times all the errors are roughly on the same level.

In Fig. 7 we show the solution at the point ðy ¼ 1:5; z ¼ 3Þ, i.e., at the center of B, as a function of time t,
for f ¼ 0 (Fig. 7(a)) and for f ¼ 50 (Fig. 7(b)). The ‘exact’ solution is compared to the NRBC solution. The

agreement is excellent in both cases.
7. Concluding remarks

In this paper we have derived exact DtN boundary conditions on cross-sections of 3D semi-infinite wave

guides, used for truncating the guides in computations. The exact boundary condition is nonlocal in space
but local in time. We showed how to incorporate it in a finite element scheme in the computational domain.

Practical implementation required the truncation of the exact boundary condition by approximating an

infinite sum with a finite sum, and by terminating an infinite recursion relation. The possible dispersiveness

of the medium was treated with ease within this methodology. To the best of our knowledge, this is the first

time that an exact boundary condition is derived in the dispersive time-dependent case, in any dimension.

We note, however, that the method presented here is inherently limited to wave guides (albeit in any

dimension and with an arbitrary cross-section), since we relied on separation of variables to obtain an

eigenvalue problem in the finite cross-section of a cylinder. For more general wave problems in unbounded
domains one needs to resort to other methods, such as those proposed in [15,16].

We also remark that the convergence of the scheme as J (the parameter used for the termination of the

recursive relation governing the auxiliary functions /j) approaches infinity has not been proved here, al-

though numerical experiments support it. The theoretical convergence analysis is left for investigation in

future studies.
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